Statistical errors for the edm éxpériment

1 Introduction

Technically, the main goal of the new edm experiment* is to find nonvanishing linear slope
of|R = %ﬁ—ﬁgﬁ as a function of time. Here IV, and NN, are number of events (decay electrons)
coumnted by upper and lower detectors, respectively. In this paper we study statistical properties

of the chi-squared fit of function R(¢) with linear function f(¢) = kt Parameter % is what we
really want to find in this experiment.

2 Statistical error for R value

S
First of all, let us find statistical error of R for some particular time bin, #,. Denote Ny and Nd
and R, to be the number of up and down events and R, respectively, for the “ensemble average”
(or “true”) values, and introduce N = N + Nj and A = Ny — Nj. We also define statistical
fluctuation of R as §R = R— R, and, similarly, statlstlcal fluctuations 6N, = N, — N2, 0Ny =

Ny — Nj. Then

Re R 43R Ny—Ng (N2 +0N,)— (Ng+6Ng)  A+6N,—6N; _
B T ON,+Ng o (NG +0N,) + (N3 +6Ng)  N+6N,+6N;

A GN,—6N; A N-A _ N+A _
= ]Tf'-i-———ﬁ-—— N2((5N +5Nd) Ro 4+ 0Ny~——— N 5Nd~—N—2-_
— Ro 48N, 2Nd 5Nd2]frv | - e

thus 0R = (SNU%]@ — 5N42N". Then statistical error for R, og, can be found as ensemble

average of (0R)? :

ot = ((6R)?)=((oM,)? >4Nd+((5Nd)> -2 (N N3 + NyNZ) =
_ 4NNd(N vy = Pl o ®

Thus|or = 24/ %52 NuNy \for arbitrary N, and Ny. For our expenment however we would expect,
rather small dlfference (if any) between IV, and N;. Therefore N, = Ny =~ N/2 and or ~1/VN. '

*see J-PARC Letter of Intent: Search for a Permanent Muon Electric Dipole Moment at the 10724 e.cm
Level, January 9, 2003
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Figure 3: MC simulation of the muon EDM signal,

R = Nup—lucus

Nup+Naown

3. Selection of the pion momentum (curved solenoid section).

versus time.

4. Decay of pions to muons (pion decay and muon transport section).

5. Selection of the muon momentum, and

6. Compression of the muon momentum spread by using fixed field alternating gradient

(FFAG) phase rotator.

Since the momentum acceptance of the muon storage EDM ring would be limited to a level
of Ap/ p =~ 2%, 11; 1s desn:able to employ the phase rotation techmque to reduce the energy
spread with minimim loss of muons. By usmg phase rota,tmn, the momentum spread of
the muon beam can be reduced by more than an order of magnitude, from Ap /p= :1:30%

to Ap/p ~ i2%. This would provide a sufficient number of polarized muons injected into

the muon storage EDM ring.

To accomplish a phase rotated muon beam for the EDM experiment, a new beam
facility has to be constructed. We refer to it as PRISM-IL. The me,jor difference from

PRISM-I (which is primarily for the s~ — e~ conversion experiment) is in the momentum
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In this section we repeat our evaluations of statistical errors and correlations of fit parameters
for the two parameters fit (slope plus offset) done in the previous section, but now without any
assumptlons on start time ts, stop time %,,, muon lifetime 7 and beam polarization lifetime 7.
In this section we shall denote initial number of muons as N, to match Yannis’ notation, thus

N@) = N, et/ | (20)

We denote a to be a constans offset of R(t) as before, but for the slope % We’ll use Yannis’
expression P, pe ~t/T d, where P, is 1n1t1a1 beam polar1zat10n dis edm and p = 42—, where A is
asymmetry, F* = E, +uB and S is particle’s spm S =h/2 for muon and S = h for deuteron.

Thus our two parameter fit function now has. following form: _

f&) =a+ (Pope"t/ k4 d) -t | 'K (21)

and we fit for o and d. In order to avoid confusions, we shall define parameters a, N, and F,
as offset, initial number of muons and initial beam polarization, respectively, at the start time,

i.e. at t = t,. Then eqs.(20,21) read
N(t) = Noe 0" . (22)
f@) = a+ (Ppe ) wd) - (1 —1,) (23)

Equations (22) and (23) are exphcltly invariant with respect to arbitrary choice of time origin. '
For our evaluations we shall need total number of events: .

1 rim T ftm : N.1 ..
_ o~ R | —(t—ts)/T g0 — 2100 —tm [T ~ts [T ts /T —
N = Zi:N,Nb A N(t)dt-b/f,s N,e dt , ( e +e )e

CNoT f 0 e, ) ' ' o n
= (e (24)
where b is a width of time bin and T' = ¢, — t,. Alternatively, eq.(24) can be used to express b:
| b= o (—e T 1) | (25)

Find derivatives of fit function f(t) with respect to its parameters o and d:

of 4 '
= 2= . - 26
f 1 a a 1 ( )
o= of _ (P,,pe—(t—*s>/fv) (=) (27)
2 od ~ \

Then find elements of matrix A:

fo’N——f 1N | o™




Explicitly:

A = T /t N di =N o (29)
N tm
| el s —(t_tS)TP t — \ _(t—ts)/’r —
Ao Aoy NOT(—B"T/T " 1) /ts (Pope ’ ) ( tg) X Nye di
i ] NPOp bm—ts _‘E/TP _E/T d = NPOp . T "“E/Tl frnd
et b C e RS Ty y €
—p=T/71{ - '
o — e m(T+n)+n
= NBp— - : , .
= NP.,p - e . {30)
. N " ptm 2 .
— —{t—ts)/7 Y —{E=ts /T g4 —
Asa Nor(—eT" 1 1) /ts (Po,oe ?) (t —ts)* x Noe dt
N(P P)z tm —ts 26/ £ N'(P P)z T |
— o " —2¢/1p ,—E/T 2d — o _ —&/72 ' 2 —
7(—e~T/7 +1) Jo ¢ A= 7(—e"T/m +1) Jo e
—~e~TIn(T? 4 2Ty + 273) +273
= Po 2 E € 2 2 22 o
Here we use substitution & = ¢ — t, in some integrals and introduce parameters g/@nd Ty-such
that . 1 1] 112 T
— = =4 —| and —=—+4— (32)

1 T Tp T T Tp

Now we find the determinant of matrix A;;:

: NP, 2 . ' .
A Agy — Arp Ao = ['r (_B_T/T'O+ 1)] X (33)

X [(‘—é'T/TZ (T?r + 2T72 +273) + 2'75’) X (-—e’T/TT'—{- 7’) — (——e‘“T/Tl (TTl -l— ) + 712)2]

and hence

a3

A 1 [r(-eT+1) ¥ )
AnAgs — Apdn N Pyp B (34)

-1

, ‘ \
x | (—eT/™(T? 1y + 2772 + 273) + 275 ) X (e Tl 1) = (= T/ (Try + 2y + 73 ) |
2 2 2 1 ¥) |

BEquation (34) is valid for arbitrary values of parameters T', 7 and 7,. In the next section we
consider several particular cases of relations between these parameters, for which eq.(34) may

be simplified.

51 T'>T1,1

As it evident from eq;(34), the obvious simplification may_be achieved if "> T, TZ;. In such a
case we have ' "

' 1 T \2 ~1
ag = 7 (Pop) X[ZTS’T—_'rf] (35)
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which is much simpler than initial equation (34). In turn, eq.(35) may be simplified 1ore if

Tp > 7 (thus 71,79 = 7):

1 :
2 _ SR
7T N @p (%6)
and if 7 > 7, (thus 7 & 7, T2 & %ﬂz)’
1 4T
2 - -
4T N (Bpp T - 0

We note that eq.(36) is in agreement with eq.(18) in section 2.

5.2 Tp > T

For this case 7,73 ~ 7 and

2' 1 [T(—e“T/T—l-l)rX
o2 = &

d’_ Y P,p
. , : -1
X [(—-e_T/ T(T?r + 2772 + 27%) + 273) X (—-e“T/ T+ 7') - (—-e_T/ (T'r+ 7‘2)4“7‘2)-3} =
- -2
7(—e T/ 41 ; A -
— % ( Pop ) % [6—2T/TT4 _ e-—T/T(TZTQ + 27_4) +T4] 1 _
(7 (—e T/ +1)] ’ -1
_ % ( o ) « 4[74 ( T/ _ 1)2 T T272} _
. - = ——1 .
1 9 e—T/T T2 .
_ eI | - 38
N (P.p)? * [T (e“T/T— 1)2 : (38)
This equation can be simplified more for particular values of parameters 7T":
| ) 1 12
e for Tp>>T>>T4 J(%:mﬁ (39)
' 1
o for Tp>>T>>'T O'gzm (40)

e the last possible case in this section, T > 7, > 7, was already considered in the previous

section, see eq.(36).

5.3 T> T

For this case 7, &~ 7, and 75 & %7,. Substitution of these in eq.(34), though, doesn’t simplify
the latter much. Therefore here we consider more specific cases only:

- 1771 11,070 1 12
.fOI"T>>Tp>>T ‘ ngﬁ[m]X[ﬁT4] :J\—[(_P-—op)—z-ﬁ (41)
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which is, quite predictably, same as in eq.(39);
sforT>T>m

1 [T1% 1 -1 1 771?21 -1 1 AT
S s34 N .3 _ il
Y [Pop}i 8 Lﬂ’T TP] N [Po } 8 [4TPT] ik B

"o the last possible case in this section, T > 7 > T, Was already considered in section 3.1, see
eq.(37). Note that eqs.(37) and (42) are completely identical except for exchange T' <+ .

P



Deu'ter‘on edm s'foraje r{uy 5¢'~m.u /al'([u'Ohs

_(ehllrot/ orbit csues
- Contrnuous .""9- Fieldd - B= 0/13T | P=(02GCeV

Piece — wise M.'J(‘-e/cl . B= 03T P=0%y6el

Tntrocuce E-feeld (g—z camPeasa‘l.‘:‘On ) -

B= 03T E=[JSMY, P=0636eV
B= 01241 E=385 MV, P=p83&e

Beam ,ﬂLor‘otje (ssUu-es

To More realistic E—field
Quad ru poles

S—dimeunsconal fields (opera”)
RF cavities .

Feeld Perfurbaf?‘ohs (""'P‘rfe"f'b“?m"sa/‘;y”'-- )

Others (see Yuri's report )
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Equatmg right hand sides of egs. (10) and (13) and redenote index m back to

equation for Ag: _
= (1) (2
n__ T \n+s sinh[(n-i—%) ’TT“]

' and hence solutlon for the electrostatic potentlal is

4 1

n we obtain

(14)

o= 3 5 () <smh[é 7 %])XSinhKM%) ¥l 3) %]-(15),

2 Electrostatic field

From electrostatic potential given in eq.(15) find electrostatic fields:

o E (i) (D el 7] o

10 o0 ) e 8]

n=0

)7 e

Since we :i_re interested in electrical field in some region at and around of deu
orbit, it is convenient to represent electrical field in terms of multipoles.
First, we use hyperbolic-trigonometric equation

teron central

cos(a + ib) = cosa cosib — sina sinib = cosa cosh b — isina sinh b (18)
and rewrite egs.(16) and (17) as
E:,;'—l- ik, = _2 V i -(_1)71 ~ | X cos [(n + 1) z(x + zy)} (19)
B b / sinh ‘(n-!— %) % 2] b ;
- 2. & (1) ' N\,
or EByp+iE, = —=V = — | X cos [(n + -—) —42'] 20
’ b nz=:o (sinh_ (n+3)% ) 270 0

where Z = z + #y. Elements of decomposition of cosine in the right hand side
powers of Z gives multipoles value of electric field:

of eq.(20) in

(21)

mriny = 2y § () 8 G [ )
B %V 2;0((2;3; GLZ_) Tg(n+%> sinh [Enﬂ )”—b—] -
=V iomzmr | | |




For our case, numerical calculation for the coefficients C, gives:

= —0.39701767 [em™!] | (22)
= 2.34160101-107° [em™"] ' ' (23)
= 3.01262788-107* [em™?] , (24)
= 1.44295465-107° [em™®] (25)
= 2.50862322- 1077 [em™] (26)
= —5.76732932-107° [em™®] ‘ (27)
= —4.74165277- 107" [em™"] (28)

'3 Electric field m the deuteron storage ring.

Y A - ;i-;w T

Z

Figure 2: Geometry of deuteron storage ring

System of coordinates for the deuteron storage ring is shown in Fig.2. Axis X is pointed ra-
- dially outward, axis Y is vertlcally upward and 7 is azimuthally along traj ectory of deuterons.
In such a system magnetic field B is veritically upward and electrical field E required to com-
pensate g — 2 precession of deuteron’s spin is radially outward. Therefore for this case we
must assume that voltage V as given in Fig.1 has negative value. For our deuteron stor-
age ring studies we have chosen [dipole] electric field 3.5 MV/m=0.035 MV /cm. Then from
eqs.(21) and (28) we can find required voltage V on electrods: -

(By+iB)aipote = V Co= —0.39701767 crm™"V [V]

hence ' Ey dipole = 0 )
and Epdipole = —0.39701767 V [V/cm] ' (29) .
. ‘ 0.035 MV /cm
and therefore V{V] T 3Tl ot = —0. 08816 MV = ——88 16 kV




